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Abstract
Entanglement betweenn particles is a generalization of the entanglement
between two particles, and a state is considered entangled if it cannot be
written as a mixture of tensor products of then particles’ states. We present the
key notion ofsemi-separability, used to investigaten-particle entanglement by
looking at two-party entanglement between its various subsystems. We provide
necessary conditions for n-particle separability (that is,sufficient conditions for
n-particle entanglement). We also provide necessary and sufficient conditions
in the case of pure states. By surprising examples, we show that such conditions
are not sufficient for separability in the case of mixed states, suggesting
entanglement of a strange type.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

Entanglement between two particlesA and B provides correlations that have no classical
counterpart [7, 2, 11]. A two-particle pure state can either be a tensor product of the one-
particle states, or else it contains entanglement between them. In general, the state of a
composite system is a mixed state: a mixture of pure states. For mixed states, in addition
to being entangled or a tensor product, there is a third possibility, which is a mixture of
tensor-product states. Such a state is not entangled, and the nameseparable state is used to
consider both tensor products and mixtures of tensor products. Fulfilling Bell’s inequalities
provides necessary conditions for separability. (Equivalently, breaking Bell’s inequalities
provides sufficient conditions for entanglement.) There are many other necessary conditions
for separability, such as the inability for the state to be used to teleport a qubit [3]. The
other direction is much more subtle; necessary conditions for two-particle entanglement (that
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is, sufficient conditions for separability) were given in some special cases [12], but are still
missing in the general two-particle case [9].

For three and more particles, the situation is more complex as we demonstrate in this
paper. Entanglement betweenn particles is a generalization of the entanglement between
two particles, and a state is considered entangled if it cannot be written as a mixture of
tensor products of then particles’ states. We discuss properties which, by definition, are non-
trivial only for systems composed of more than two particles, such as two-party entanglement
or separability, which is entanglement or separability between the various possible pairs of
subsystems. For instance, there are six possibilities of forming such pairs in the three-particle
(A, B, C) case: (A; B), (B; C), and (C; A) when one particle is traced out and the other two are
given to the two parties, and (AB; C), (BC; A), and (CA; B) when two particles are given to
one party and the third particle to the other party.

2. Semi-separability

We definek-party semi-separability of a system as follows. Let a system containn particles
such thatn > k. Divide all particles intok or k + 1 non-empty groups of particles (k or k + 1
subsystems). If we divided intok + 1 subsystems, trace out one of them to be left withk
subsystems in any case. The original system is semi-separable if thosek subsystems are
separable.

We shall distinguish the two cases, depending on whether we trace out one subsystem
or not.

k-party total semi-separability. Divide all particles intok non-empty groups (k subsystems)
and check separability of thek subsystems.

k-party partial semi-separability. Divide all particles intok + 1 non-empty groups (k + 1
subsystems), trace out one subsystem, and check separability of the remaining
k subsystems.

We shall refer to these ask-TSS andk-PSS, respectively. The casek = 2 is of special interest
since the separability of two parties (two subsystems in our case) has been extensively studied.
We concentrate onk = 2 in the following and drop the indexk unless there is a danger of
confusion.

We use these properties to provide a partial classification ofn-particle entanglement
and separability in terms of the much simpler (albeit still only partially solved) problem of
separability of two subsystems, each possibly composed of several of the original particles. We
providenecessary conditions for n-particle separability in the general case. We also provide
necessary and sufficient conditions in the case of pure states, conditions which do not hold
for mixed states. These properties provide a new insight into many-particle entanglement and
allow us to find a surprising type of entanglement, which shows a new fundamental difference
between the properties of pure states and of mixed states.

These properties may be useful in the future in providing a complete classification of
separability versus entanglement of many particles. Different and independent approaches to
many-particle entanglement have been discussed in other works [1, 10, 6].

3. Conditions for multi-particle separability

Most of the discussion in this section is restricted (for simplicity) to two-subsystem
entanglements in a system composed of three particles, but is true for two subsystems in
a system composed ofn particles unless explicitly stated otherwise. Furthermore, we restrict
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our examples to qubits, to make it simple and clear, butall theFacts we provide below apply
to higher-dimensional Hilbert spaces.

Let Alice, Bob and Carol (who are spatially separated) have three qubits (denoted byA,
B andC respectively), prepared in some joint pure state|�(r)〉, where (r) is used to index one
of possibly many such states:

|�(r)〉 =
7∑

i=0

α
(r)
i |i〉 = α

(r)
000|0A0B0C〉 + α

(r)
001|0A0B1C〉 + · · · + α

(r)
111|1A1B1C〉 (1)

with
∑

i |αi |2 = 1. The states|0〉 and|1〉 are basis vectors of each qubit, and|00〉 ≡ |0〉⊗ |0〉.
We usually avoid using the tensor product notation⊗ unless we want to emphasize it. The
most general three-qubit state is a mixture of states of this type

ρ =
∑
r

pr |�(r)〉〈�(r)| (2)

with
∑

r pr = 1. Any such state can be written in various forms. A three-particle state is
considered separable, or non-entangled (NE), if and only if it can be written as a mixture of
tensor products

ρNE =
∑
s

ps

[
ρ
(s)
A ⊗ ρ

(s)
B ⊗ ρ

(s)
C

]
. (3)

A pure state can be presented using its Schmidt decomposition [11], provided we separate
one subsystem at a time (and do it recursively if there are more particles). A separable pure
state is necessarily in a tensor product of one-particle pure states|�NE〉 = |�AB〉 ⊗ |φC〉 =
|φA〉 ⊗ |φB〉 ⊗ |φC〉 where the|φ〉’s are one-qubit states.

Let us study a three-particle entangled state by looking at the entanglement between its
various two subsystems. There are three options for partial semi-separability: tracing out
(ignoring) one particle to be left with two particles. Similarly, there are three options for total
semi-separability: considering two particles as one subsystem, to be left with this combined
subsystem and the remaining particle. If we trace out particleC and the remaining state
of systemsA andB is separable, we denote this two-subsystem partial semi-separability by
PSSC (A; B). If the subsystem composed ofAB is separable fromC, we denote this two-
subsystem total semi-separability1 by TSS(AB; C).

Similar notation can be written for the other four options obtained by cyclic permutations
of the three particles. A negation is denoted byTSS (AB; C) saying thatAB is entangled with
C. In the general case ofn particles andk subsystems, more terms could appear; for instance,
4-TSS(A; BC; D; E) and 3-PSSCD(A; B; E). Once these new notions are established, we can
use them to prove some simple facts, relatingn-particle entanglement to the better understood
entanglement between two systems.

A separable state (such as in equation (3)) presents all three possibleTSS properties. This
is immediately obtained from the fact that the state is still separable when collecting two
particles together: for instance, collectingA andB together yieldsρNE = ∑

s ps [ρ
(s)
AB ⊗ ρ

(s)
C ].

Thus:

Fact 1. If a state does not presentall cases ofTSS, then it is entangled.

In other words, the existence of all possibleTSS is a necessary condition for separability (and
the existence of oneTSS is a sufficient condition for entanglement). In the original conference
1 Later works, which appeared after the 1998 preliminary version of ours [5], refer to this asbi-separability along
the (AB; C) cut.
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version of this paper [5], we had conjectured that the converse should hold because it seemed
reasonable to expect that a system that shows all cases ofTSS should in fact be separable.
This conjecture was subsequently proven wrong via an explicit counter example [4], which
is provided here in section 5 for the sake of completeness. The conjecture proved to be very
fruitful because its refutation was followed by an extensive research on the bi-separability of
multi-particle systems.

A separable state (such as in equation (3)) satisfies

TrCρNE =
∑
s

psTrC
[
ρ
(s)
A ⊗ ρ

(s)
B ⊗ ρ

(s)
C

] =
∑
s

ps

[
ρ
(s)
A ⊗ ρ

(s)
B

]
(4)

due to the linearity of the trace-out operation. Similar equations can be written ifA or B are
traced out. Therefore it presents allPSS properties. Thus:
Fact 2. If a state does not presentall cases ofPSS, then it is entangled.

In other words, the existence of all possiblePSS is a necessary condition for separability (and
the existence of onePSS is a sufficient condition for entanglement). The converse is not
true and a three-particleentangled state might present allPSS properties: the GHZ–Mermin
state [7] is a good example—see section 4. Therefore, the existence ofall PSS is a necessary
condition for separability, but not a sufficient one.

Note that equation (4) also implies that if a state fulfilsTSS (A; BC) then automatically
it also fulfills PSSC (A; B) andPSSB(A; C), and similar conclusions can be obtained by cyclic
permutations. Thus, if a state fulfils two total-semi-separability conditions, sayTSS(A; BC)
andTSS(B; CA), then it fulfils all threePSS conditions.

For pure states, we now obtain conditions that are both necessary and sufficient for
separability. (We need only prove that they are sufficient, since the fact that they are necessary
is already shown using the previous facts.) We omit Dirac’s braket notation unless confusion
could arise.

Fact 3. A pure state that presents allTSS properties (for all possible decompositions of two
subsystems) is separable.

Proof. We prove Fact 3 in the case of three particles. If the three-particle pure state is totally
semi-separable for all possible ways of decomposing the subsystems then it can be written as
�ABC = �AB ⊗ �C . If �AB can be written as�A ⊗ �B then�ABC = �A ⊗�B ⊗�C and
the state is separable.

Since�ABC presents allTSS properties it can also be written as�ABC = �A ⊗ �BC .
Assuming for a contradiction that�AB cannot be written as�A ⊗ �B , it can be decomposed
(due to Schmidt decomposition [11]) asα�A ⊗ �B + β� ′

A ⊗ � ′
B with α �= 0 and

β �= 0, whereχ ′ denotes an orthogonal state toχ for any stateχ . Now �ABC =
α�A ⊗ (�B ⊗ �C) + β� ′

A ⊗ (� ′
B ⊗ �C) is (by treatingB and C together) the Schmidt

decomposition ofA andBC, showing entanglement betweenA andBC, in contradiction to
�ABC = �A ⊗ �BC . QED

Fact 3 can be strengthened. In the case of three particles, we have:

Fact 3
′
. A three-particle pure state that isTSS twice is separable.

Proof. Without loss of generality, suppose that the twoTSS properties areTSS(AB; C) and
TSS(A; BC). We can make use of the proof of Fact 3 since it used only these two semi-
separabilities anyhow. QED

Fact 4. A pure state that presents a particularTSS in which one particle is separable from all
the others, and also presents allPSS, is separable.
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Proof. Again, we prove it in the case of three particles. Since the three-particle pure state
is totally semi-separable once (say,TSS(AB; C)) it can be written as�ABC = �AB ⊗ �C .
We now trace out particleC to get�AB = �A ⊗ �B since the state presents allPSS. Thus,
�ABC = �A ⊗ �B ⊗ �C . QED

We conclude that Facts 3, 3
′
and 4 provide necessary and sufficient conditions for the

separability of pure states.
Surprisingly, Fact 4 is not true for mixed states. We present in section 5 a three-particle

mixed state that presents one case ofTSS (say,TSS(A; BC)) and allPSS, yet it is entangled.
More surprisingly, Fact 3 is also not true for mixed states. We present in section 5 a three-
particlemixed state that presents all cases ofTSS, yet it is entangled [4]; such a state has
a special property—it is undistillable (meaning that no arbitrarily pure singlet state can be
obtained from it, even if an unbounded number of copies is available).

4. A few simple examples

Let us first provide some examples of pure states in order to obtain a better intuition about
the meaning of the different semi-separability conditions. We also describe the techniques
required for verifying the existence of semi-separabilities.

Our first example is

|�En〉 = |�A〉 ⊗ |�−
BC〉 (5)

with |�−〉 = (1/
√

2)[|01〉 − |10〉] is the singlet state of two qubits. When the non-entangled
particle is traced out, the other two are still entangled so we havePSSA(B;C), but whenB or
C are traced out the remaining particles are not entangled, so we havePSSB(A; C) andPSSC

(A; B). Clearly it is alsoTSS(A; BC), TSS(AB;C) andTSS(AC;B): When the two particles
A andB are considered as one subsystemAB, it is fully entangled with subsystemC since the
state can be written as(1/

√
2)[|�A0〉 ⊗ |1〉 − |�A1〉 ⊗ |0〉], and the states|�A0〉 and|�A1〉

play the role of the relevant two basis vectors|0〉 and|1〉 of the four-dimensional subsystem.
Consider a three-qubit case. If we write the three-particle general pure state as

|�〉 = |0A〉
(

3∑
k=0

α0k|kBC〉
)

+ |1A〉
(

3∑
k=0

α1k|kBC〉
)

(6)

then tracing out subsystemA will leave the other two subsystems in a (possibly mixed) state

ρ =
(

3∑
k=0

α0k|kBC〉
)(

3∑
l=0

α∗
0l〈lBC |

)
+

(
3∑

k=0

α1k|kBC〉
)(

3∑
l=0

α∗
1l〈lBC |

)

=
3∑

k=0

3∑
l=0

(α0kα
∗
0l + α1kα

∗
1l)|k〉〈l|. (7)

Using the partial transposition technique of Peres [12], it is possible to check whether or not
this reduced density matrix is separable for any particular case. This result (and similar results
for tracing out the other particles) can be used to verify if entanglement between two particles
exists. For larger systems (such as qutrits, which are three-dimensional Hilbert spaces), no
perfect way to tell if the two remaining qutrits are separable has been found so far, and it is
known that Peres’s criterion does not apply [9].

To verify that all cases ofPSS are present, the three possibilities must be checked. For
instance, the state

|�ABC〉 = cosθ√
2

|000〉 +
cosθ√

2
|011〉 +

sinθ√
2

|100〉 − sinθ√
2

|111〉 (8)
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(with |000〉 ≡ |0A0B0C〉) leads to the reduced density matrix

ρBC = 1

2




1 0 0 cos 2θ
0 0 0 0
0 0 0 0

cos 2θ 0 0 1


 (9)

which is entangled forθ �= π/4.
Checking theTSS property is sometimes impossible even for three qubits, using the best

techniques currently available. If we write the three-particle general pure state of equation (6)
using a Schmidt decomposition, it can be written as

|�〉 = cosθ |φA〉|χBC〉 + sinθeiφ|φ′
A〉|χ ′

BC〉 (10)

(where|ψ ′〉 stands for a state orthogonal to|ψ〉). Although it is not obvious to find this
decomposition, this can always be done [11]. When both terms appear in the Schmidt
decomposition, the state isTSS(A;BC). Generalizing this argument to mixed states is usually
impossible with current techniques. Peres’s partial transposition [12] works unconditionally
[9] only for two qubits (2× 2) and for a qubit and a qutrit (2× 3), and it can only be used to
check entanglement of a four-dimensional system with a two-dimensional system, but not to
check separability.

In the following examples of pure states, the state is already given in such a Schmidt
decomposition (for all possible combinations of pairs), so they clearly present noTSS. For a
GHZ–Mermin state [8]

�GHZM = (1/
√

2)[|0A0B0C〉 + |1A1B1C〉] (11)

let us consider the particles of Bob and Carol as one four-dimensional subsystem. Then this
state becomes a Bell state

(1/
√

2)[|0A(00)BC〉 + 1A(11)BC〉] (12)

so that|00〉 and|11〉 play the role of|0〉 and|1〉, the relevant two basis vectors of the four-
dimensional subsystem. Clearly, the same is true for the other two cases. This state presents
all PSS: when one particle is traced out, the other two are in a mixture-of-productstate. Similar
arguments apply to the following state:

�Zei = (1/
√

2)[|0A�
+
BC〉 + |1A�

−
BC〉] (13)

with |�+〉 = (1/
√

2)[|01〉 + |10〉]. ParticleA is entangled to the subsystem composed ofBC
together. By transforming to the|0±1〉 basis of particleA, this state becomes a GHZ–Mermin
state, so it presents all the same properties as above.

5. Surprising examples

We now present our first surprising example: a three-particle mixed state that presents one
TSS and all PSS, but yet is entangled! (This should be contrasted with Fact 4.) Consider
the state that is composed of an equal mixture of the two states|�1〉 = |0A〉 ⊗ |�+

BC〉 and
|�2〉 = |1A〉 ⊗ |�−

BC〉, and thus

ρ = 1
2[(|0A〉〈0A|) ⊗ (|�+

BC〉〈�+
BC |) + (|1A〉〈1A|) ⊗ (|�−

BC〉〈�−
BC |)]. (14)

This state presents allPSS: when particleA is traced out, the other particles are left in an
equal mixture of the two Bell states|�+〉 and|�−〉, which is separable since this is the same
as an equal mixture of|01〉 and |10〉; when particleB (resp.C) is traced out, it is clear that
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the particle entangled to it,C (resp.B), does not become entangled withA. This state also
presentsTSS(A;BC): when subsystemsB andC are considered as one subsystem,A is clearly
separable from it since they are written as a mixture of products.

To prove that it is an entangled state, let us show that it is not semi-separable for
TSS(AB;C). Then, Fact 1 implies that the three-particle state is entangled. The two pure
states that are mixed to giveρ can be written as

|�1〉 = |0A0B〉 ⊗ |1C〉 + |0A1B〉 ⊗ |0C〉
and

|�2〉 = |1A0B〉 ⊗ |1C〉 − |1A1B〉 ⊗ |0C〉
up to normalization. Now we can see thatC is entangled to different two-dimensional
subspaces ofAB in each of these pure states, thus mixing cannot reduce or cancel this
entanglement. Such a state is surprising: although Alice is not entangled with the subsystem
of Bob and Carol (together) she cancontrol their entanglement. If she measures in the|0± 1〉
basis, Bob and Carol will not be entangled whatsoever, but if she measures in the computational
basis, Bob and Carol are entangled without knowing it, and their state depends on Alice’s
measurement result. Thus, Bob and Carol are in a separable state if they ignore (trace out)
Alice’s knowledge, but they become entangled once they receive Alice’s result using classical
communication.

We now present a second surprising example (originated in [4]): a three-particle mixed
state that presents allTSS (and obviously, allPSS as well), but yet is entangled! (This should
be contrasted with Fact 3.) Consider the state

ρ̄ = 1

4

(
1 −

4∑
j=1

|ψj 〉〈ψj |
)

(15)

with ψ1 = |0,1,+〉, ψ2 = |1,+,0〉, ψ3 = |+,0,1〉 and ψ4 = |−,−,−〉 where ± =
(|0〉 ± |1〉)/√2. The space complementary to

{|0,1,+〉, |1,+,0〉, |+,0,1〉, |−,−,−〉} (16)

contains no product state orthogonal to these four states (see [4]), hence the state (15) is
entangled.

The state (15) has the curious property that, even though it is entangled, it presents all
cases ofTSS: the entanglement across any split into two parties is zero. For example, to show
TSS(A;BC) (so that the entanglement betweenA and BC is zero), we writea = |1,+〉,
b = |+,0〉, c = |0,1〉 and d = |−,−〉. Note that these are just theB and C parts
of the four states in equation (16), and that{a, b} are orthogonal to{c, d}. The vectors
a⊥ and b⊥ in the span(a, b) and the vectorsc⊥ and d⊥ in the span(c, d) can be used to
complete the original set of vectors to a full product basis betweenA andBC with the states
{|0, a⊥〉, |1, b⊥〉, |+, c⊥〉, |−, d⊥〉}. The state (15) is composed of these states, hence satisfies
the desiredTSS property. By the symmetry of the states, this is also true for the other splits.

6. Generalizations and conclusions

To summarize, we analysed three-particle entanglement/separability (and beyond) in terms of
its possible two-subsystems entanglements/separability, which we call total and partial semi-
separability. We presented necessary conditions for separability and also sufficient conditions
in the case of pure states. We also discussed possible generalizations and presented surprising
mixed entangled states.
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Generalizations to larger systems are more complicated. A four-qubit systemA, B, C and
D, can be discussed in terms of two-particle/three-particle entanglement,and semi-separability
to 2-TSS(A;BCD), etc, and 2-TSS(AB;CD), etc, and 3-TSS(A;B;CD), etc, and also 3-
PSSA(B;C;D), etc, and 2-PSSAB(C;D), etc, where all the ‘etc’ refer to permutations of the
particles. A relatively simple (and yet interesting) example can be built by replacing|0A〉 and
|1A〉 in the previous example of equation (14) by two Bell states of two particles (A andD):

ρ = 1
2[(|�+

AD〉〈�+
AD |) ⊗ (|�+

BC〉〈�+
BC |) + (|�−

AD〉〈�−
AD |) ⊗ (|�−

BC〉〈�−
BC |)] (17)

so that Bob and Carol are entangled if Alice and David (D) measure their entanglement, but
if Alice and David measure in the product basis|00〉, |01〉, etc, then Bob and Carol become
disentangled.
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